

This Plugin was developed with the idea of communicating

quickly and safely with the flexibowl through Omron robots,

using version 4 or version 3 of the Omron Ace software.

The Plugin does not require additional Omron licenses.

STEP 1:
By selecting the desired Application

Manager in the Multiview Explorer, by

right clicking under the Variables tree

you can add three string variables named

as follows:

• Command

• Ip

• ReturnFlexibowl

STEP 2:

By again selecting the desired

Application Manager, a new c# task can

be added under the Programs tree by

right clicking.

This task can be launched from V+ to

move the flexibowl.

Rename the task as “Flexibowl Plugin”.

ACE
versione 4

STEP 3:

Double click the program just created to

edit it.

The declarations to be used are in zone 1,

while the body of the script is in part 2.

We will now edit said script.

ACE
versione 4

STEP 4:
Add the following dependencies in

section 1 of the code:

using System.Net;

using System.Net.Sockets;

using System.Text;

using Ace.Server.Core.Scripting;

using Ace.Server.Core.Variable;

STEP 5:
In the section of code 2 instead delete and replace with all the code on the following page. The

image below shows a preview of the final result.

Trace.WriteLine("Flexibowl PlugIn " +DateTime.Now.ToString()+" Run");

string receiveString = "";

int byteSent = 0;

UdpClient m_udpClient= new UdpClient(7777);

///////////////////////
/// To change//////////

IVariableString Command = (IVariableString) ace["/Application Manager0/Variables/Command"];

IVariableString Ip = (IVariableString) ace["/Application Manager0/Variables/Ip"];
IVariableString ReturnFlexibowl = (IVariableString) ace["/Application Manager0/Variables/ReturnFlexibowl"];

///////////////////////
ReturnFlexibowl.CurrentValue="False";

IPEndPoint ep = new IPEndPoint(IPAddress.Parse(Ip.CurrentValue), 7775);

try {

 m_udpClient.Connect(ep);

 m_udpClient.Client.SendTimeout = 500;
 m_udpClient.Client.ReceiveTimeout = 500;

}

catch (ArgumentNullException ex)
{

 Trace.WriteLine(ex.ToString());

}

string dataToSend = Command.CurrentValue.ToUpper();

try {

 Byte[] SCLstring = Encoding.ASCII.GetBytes(dataToSend);

 Byte[] sendBytes = new Byte[SCLstring.Length + 3];
 sendBytes[0] = 0;

 sendBytes[1] = 7;

 System.Array.Copy(SCLstring, 0, sendBytes, 2, SCLstring.Length);
 sendBytes[sendBytes.Length - 1] = 13; // CR

 byteSent = m_udpClient.Send(sendBytes, sendBytes.Length);

 var receivedData = m_udpClient.Receive(ref ep);

 receiveString = Encoding.ASCII.GetString(receivedData);

 if ((receiveString.Contains("%")) && (dataToSend.Contains("Q"))) {

 bool moving = true;
 while (moving == true) {

 SCLstring = Encoding.ASCII.GetBytes("RS");

 sendBytes = new Byte[SCLstring.Length + 3];
 sendBytes[0] = 0;

 sendBytes[1] = 7;

 System.Array.Copy(SCLstring, 0, sendBytes, 2, SCLstring.Length);
 sendBytes[sendBytes.Length - 1] = 13; // CR

 byteSent = m_udpClient.Send(sendBytes, sendBytes.Length);

 receivedData = m_udpClient.Receive(ref ep);
 receiveString = Encoding.ASCII.GetString(receivedData);

 if (receiveString.Contains("F"))

 moving = true;
 else

 moving = false;

 System.Threading.Thread.Sleep(20);
 }

 ReturnFlexibowl.CurrentValue = "Done";

 }
 else {

 SCLstring = new Byte[receivedData.Length - 3];

 System.Array.Copy(receivedData, 2, SCLstring, 0, SCLstring.Length);
 receiveString = Encoding.ASCII.GetString(SCLstring);

 ReturnFlexibowl.CurrentValue = receiveString;

 }
 m_udpClient.Dispose();

}
catch (ArgumentNullException ex)

{

 Trace.WriteLine(ex.ToString());
}

ACE
versione 4

ACE
versione 4

STEP 6:
After copying and pasting the code, check that the paths of the variables previously created are

correct.

To verify this, check the box highlighted in the image to make sure the paths of the three variables

are correct.

Select one of the three variables previously created, drag&drop on the page with the code.

In this case you have created a reference to your variable; check the correct path and delete the line

created.

Ensure the paths of the three variables in the code are correct.

Example:

Original
IVariableString Command = (IVariableString) ace["/Application Manager0/Variables/Command"];

Edited
IVariableString Command = (IVariableString) ace["/Application Manager4/Variables/Command"];

ACE
versione 4

STEP 7: Once here, the movement of the Flexibowl can be tested.

By setting the Ip in the IP variable (ref. 1) and the command to be run in the Command variable

(ref. 2), click the Run button (ref. 3) to send the command to the Flexibowl with the set Ip.

STEP 8: We will now see how to set the variables and run the script from V+

Let's create a V+ program with the code on the next page.

Copy the code and check that the paths of the variables are correct, e.g.:

$object = "/Application Manager0/Variables/Ip"

After setting the Ip and the command, by running the V+ script the flexibowl will carry out the

command

;insert the data

;////////////////////////

$ip="169.254.1.10"

$command="QX3"

;///////////////////////

At the moment the Ip, Command and return.flexibow variables in V+ are local (AUTO).

To set them from external programs, make these variables Global, therefore not Auto.

Running the V+ script will execute the C# script, which will operate the flexibowl

.PROGRAM flbplugin()

 AUTO $object, $variable, $ip, $command , $return.flexibow , $method, $args[0]

 AUTO REAL status, is.alive

 ;insert the data

 ;////////////////////////

 $ip="169.254.1.10"

 $command="QX3"

 ;///////////////////////

 ;Set the data on c#

 ;IP

 $object = "/Application Manager0/Variables/Ip"

 $variable = "CurrentValue"

 CALL rm.write.str($object, $variable, 1, $ip, status)

 IF (status < 0) THEN

 TYPE "Unable To Write Value: ", status

 PAUSE

 END

 ;COMMAND

 $object = "/Application Manager0/Variables/Command"

 $variable = "CurrentValue"

 CALL rm.write.str($object, $variable, 1, $command, status)

 IF (status < 0) THEN

 TYPE "Unable To Write Value: ", status

 PAUSE

 END

 ;Execute the c#

 CALL rm.chk.server(is.alive)

 IF (is.alive == FALSE) THEN

 TYPE "Not Communicating"

 PAUSE

 END ; Execute a script on the server and wait for 3 seconds for it to complete

 $object = "/Application Manager0/Programs/FlexibowlPlugin"

 $method = "Execute"

 CALL rm.execute($object, $method, 0, $args[], 5, status)

 IF (status < 0) THEN

 TYPE "Problem executing script: ", status

 PAUSE

 END

 ;Read the Answer

 $object = "/Application Manager0/Variables/ReturnFlexibowl"

 $variable = "CurrentValue"

 ;Read the answer from flexibowl

 CALL rm.read.str($object, $variable, 1, $return.flexibow, status)

 IF (status < 0) THEN

 TYPE "Unable To Read the Value: ", status

 PAUSE

 END

.END

ACE

versione 4

STEP 9:
List of commands and descriptions to be sent to the Flexibowl:

Action Description

MOVE Moves the feeder the current

parameters.

MOVE-FLIP Moves the feeder and activates Flip

simultaneously

MOVE-BLOW-

FLIP

Moves the feeder and activates Flip

and blow simultaneously

MOVE-BLOW Moves the feeder and activates Flip

simultaneously

SHAKE Shakes the feeder with the current

parameters

LIGHT ON Light on

LIGHT OFF Light off

FLIP Flip

BLOW Blow

QUICK_EMPTING Quick Emptying Option

RESET_ALARM Reset Alarm and enable the motor

Command Description

QX2 Move

QX3 Move - Flip

QX4 Move - Blow - Flip

QX5 Move - Blow

QX5 Shake

QX7 Light on

QX8 Light off

QX9 Blow

QX10 Flip

QX11 Quick Emptying Option

QX12 Reset Alarm

ACE
versione 4

STEP 1:

ACE
versione 3

From here on we will see how to integrate the Flexibowl Plugin into Ace 3.X or earlier versions.

Create THREE String V+ variables.

-Ip

-Command

-RerturnFlexibowl

ACE
versione 3

STEP 2:
Create a folder in the WorkspaceExplorer and call it Flexibowl.

Now right click the folder just created, ImportWorkspaceFile, and upload the FlexibowlPlugin.awp

file provided by us.

STEP 3: Now the V+ variables need to be indexed with the C# variables.

For example, double click the C# Ip variable. By setting this variable as a ControllerStringVariable

(black box), it can be associated with our V+ Ip variable (green box). Do this for all three variables.

ACE
versione 3

STEP 4: You need to check that the paths of the C# variables are correct.

To verify this, check the box highlighted in the image to make sure the paths of the three variables

are correct.

To do this, select one of the three C# variables, drag&drop on the code page and check that the

path is correct.

In this case you have created a reference to your variable; check the correct path and delete the line

created.

Ensure the paths of the three variables in the code are correct.

Example:

Original
IVariableString Command = (IVariableString) ace["/Application Manager0/Variables/Command"];

Edited
IVariableString Command = (IVariableString) ace["/Application Manager4/Variables/Command"];

ACE

versione 3

STEP 5: We will now see how to set the variables and run the script from V+

Let's create a V+ program with the code on the next page.

Copy the code and check that the paths of the variables are correct, e.g.:

$object = "/Application Manager0/Variables/Ip"

After setting the Ip and the command, by running the V+ script the flexibowl will carry out the

command

;insert the data

;////////////////////////

$ip="169.254.1.10"

$command="QX3"

;///////////////////////

Al momento le variabili Ip,Command e return.flexibow in V+ sono locali (AUTO), per

settarle da programmi esterni rendre queste variabili Globali, quindi non Auto.

Eseguendo lo script V+ verrà eseguito lo script C# che azionerà il flexibowl

.PROGRAM flexibowlplg()

 AUTO $object, $variable, $ip, $command , $return.flexibow

, $method, $args[0]

 AUTO REAL status, is.alive

 ;insert the data

 ;////////////////////////

 $ip="169.254.1.10"

 $command="QX3"

 ;///////////////////////

 ;Execute the c#

 CALL rm.chk.server(is.alive)

 IF (is.alive == FALSE) THEN

 TYPE "Not Communicating"

 PAUSE

 END ; Execute a script on the server and wait for 3

seconds for it to complete

 $object = "/Flexibowl/Flexibowl"

 $method = "Execute"

 CALL rm.execute($object, $method, 0, $args[], 5, status)

 IF (status < 0) THEN

 TYPE "Problem executing script: ", status

 PAUSE

 END

 ;the Answer

 ;$returnflexibowl

.END

At the moment the Ip, Command and return.flexibow variables in V+ are local (AUTO). To set them from

external programs, make these variables Global, therefore not Auto.

Running the V+ script will execute the C# script, which will operate the flexibowl

